If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x=126
We move all terms to the left:
2x^2+12x-(126)=0
a = 2; b = 12; c = -126;
Δ = b2-4ac
Δ = 122-4·2·(-126)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-24\sqrt{2}}{2*2}=\frac{-12-24\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+24\sqrt{2}}{2*2}=\frac{-12+24\sqrt{2}}{4} $
| 2h-9=3-h | | 1/5x+8/15=-1/3x | | 7n-5=2n+30 | | 5=u/2-13 | | 24x2+x-10=0 | | 12+24x=48 | | 4x-5(1-2x)=4-5x | | 1-4x=5x+7 | | 3/x+3=2/3x+19/6 | | 25=2(x+7)+1 | | 49+r=-4/9 | | -750x^2+480x-30=250x^2+1002-10x^2 | | 4•3x+3=123 | | 218=2w+2(w)+7 | | 18a+5=32 | | 16x^2-35x+26=0 | | 6w+30=2 | | 5x-4=3-2(3-2x) | | n+n=131 | | 2+3(3+2d)=4+3d+6 | | -36=3(x×7) | | 4b+3b-7=14 | | 2(3+2d)=4d+6 | | 12k^2+20k-32=0 | | 8-6x=-10+3x | | 3(4-3x)=5-7x+2 | | 11n+12=4n-33 | | 14=8x+6-2x | | 5x-15=2x-5x | | 9-7x/3=10 | | 32y=+12y | | -0.2(-8+d)=0.3(2d+1)+0.5 |